Rapid Assessment of Progress Under Aichi Biodiversity Targets 5, 14 and 15 in the Mediterranean region

Extent of Mediterranean Forests – Source: WWF Ecoregions
Foreword

This workshop document has been produced for the 5th Mediterranean Forest Week held in Agadir, Morocco from 20-24 March 2017, with support from the Forest Ecosystem Restoration Initiative of the Korea Forest Service. It aims to offer a rapid assessment of progress made by 26 Mediterranean countries under the Aichi Biodiversity Targets 5, 14 and 15 of the Strategic Plan for Biodiversity 2011-2020, focusing on Mediterranean forest ecosystems. The document presents contextual information on progress under these targets, drawing directly from two main sources, the State of Mediterranean Forests 2013 and documents prepared for the thirteenth meeting of the Conference of the Parties to the Convention on Biological Diversity (CBD COP 13), including Information Document Updated Assessment of Progress towards Aichi Biodiversity Targets 5 and 15. In addition, national reports and national biodiversity strategies and action plans (NBSAPs) of 26 Mediterranean countries were screened for a number of elements which relate to data on the state and trends of ecosystems, clarity in the definition of national targets, and modalities used to implement and measure progress towards their achievement.

NB: The designations employed and the presentation of cartographic material in this report do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
1 Introduction

1.1 Text of Targets 5, 14 and 15

Target 5: By 2020, the rate of loss of all natural habitats, including forests, is at least halved and where feasible brought close to zero, and degradation and fragmentation is significantly reduced.

Target 14: By 2020, ecosystems that provide essential services, including services related to water, and contribute to health, livelihoods and well-being, are restored and safeguarded, taking into account the needs of women, indigenous and local communities, and the poor and vulnerable.

Target 15: By 2020, ecosystem resilience and the contribution of biodiversity to carbon stocks has been enhanced, through conservation and restoration, including restoration of at least 15 per cent of degraded ecosystems, thereby contributing to climate change mitigation and adaptation and to combating desertification.

For this assessment, Aichi Biodiversity Targets 5, 14 and 15 were subdivided into the following components:

- Halve the rate of loss of natural forests and reduce it to zero where possible
- Halve the rate of loss of natural habitats and reduce it to zero where possible
- Significantly reduce the rate of degradation and fragmentation
- Ecosystem resilience has been enhanced through conservation and restoration, [...] thereby contributing to climate change adaptation and to combating desertification
- The contribution of biodiversity to carbon stocks has been enhanced, through conservation and restoration, including restoration of at least 15 per cent of degraded ecosystems, thereby contributing to climate change mitigation.
- Ecosystems that provide essential services, including services related to water, and contribute to health, livelihoods and well-being, are restored and safeguarded
- ... taking into account the needs of women, indigenous and local communities, and the poor and vulnerable

*This component has been omitted from this assessment as no relevant information was found in the sources consulted and it was not included in the review of national communications to the CBD.

1.2 Importance of Aichi Biodiversity Targets 5, 14 and 15 in the Mediterranean context

The achievement of Aichi Biodiversity Targets 5 and 15 is central to the success of the Strategic Plan for Biodiversity 2011-2020. The destruction and degradation of natural habitats that Target 5 seeks to reduce represents the single most important driver of biodiversity loss and with it, the loss of ecosystem services that Target 14 seeks to preserve. Preventing further fragmentation of habitats is essential to avoid species populations becoming isolated and to enable essential movements across landscapes and aquatic environments, especially in the face of climate change. Fragmentation is also partly responsible for the
destruction and degradation of natural habitats and therefore enhancing connectivity and corridors as well as regional cooperation for transboundary conservation of biodiversity is essential (elements addressed by Target 11 on protected areas).

Achieving Target 5 underpins the success of many other Aichi Biodiversity Targets, in particular Target 12 on preventing the extinction of threatened species. Where conversion has already taken place and pressure on the land is decreasing, the reversal of habitat loss, fragmentation and degradation, through ecosystem restoration (Target 15), represents an immense opportunity for both biodiversity conservation and carbon sequestration. Restored landscapes and seascapes can also improve the resilience and adaptive capacity of ecosystems and societies, and can contribute to climate change adaptation and generate additional benefits for people, in particular indigenous peoples and local communities and the rural poor (Target 14).

With a long history of human occupation, forests and other Mediterranean ecosystems are characterized by relatively high levels of perturbation, within stable semi-natural socio-ecosystems of high cultural, economic and biological value (e.g. cork oak forests). In this context, strictly natural habitats are scarce and may be understood as semi-natural habitats that harbour significant value for the conservation and sustainable use of biodiversity. In some cases, the maintenance of low levels of perturbation from traditional forms of land use that have taken place for centuries may be as important as the outright absence of any intervention. With historically high levels of degradation and high population densities, the objectives of ecosystem and landscape restoration may have to focus on ecosystem function for the continuous delivery of crucial ecosystem services such as water provision, rather than on the pursuit of ecological restoration to a ‘baseline’ or ‘historical’ state.²

Even so, a wide range of actions and locations to implement ecosystem restoration are available to Mediterranean countries, with an equally wide range of implications for biodiversity and other national objectives. Careful planning and policy coordination, at local, national and regional scales, are therefore needed to understand and enhance the benefits of actions aimed to conserve and sustainably use biodiversity and their contribution to concurrent policy agendas on climate mitigation and adaptation, as well as forest management, among other.

1.3 Linkages with other policy agendas

2030 Agenda for Sustainable Development and Sustainable Development Goals

The Sustainable Development Goals (SDGs) adopted in September 2015 by the General Assembly of the UN, emphasize the importance of biodiversity and the conservation and restoration of forests, mountains and drylands, among other, and protection of biodiversity, ecosystems and wildlife within the 2030 Agenda for Sustainable Development.3

Over the next fifteen years, the SDGs will provide a framework for countries to \textit{mobilize efforts to end all forms of poverty, fight inequalities and tackle climate change, while ensuring that no one is left behind}. Goal 15 contemplates the aims of the Strategic Plan for Biodiversity 2011-2020 and emphasizes the importance of protect[ing] restor[ing] and promot[ing] sustainable use of terrestrial ecosystems, sustainably manag[ing] forests, combat[ing] desertification, halt[ing] and revers[ing] land degradation, and halt[ing] biodiversity loss. All the Targets under this SDG15 provide further detail of how this may be achieved. These Targets constitute a renewed expression, by the international community, of the importance of a variety of ecosystems and their benefits for society and sustainable development. The demonstration of synergies between the 2030 Agenda for Sustainable Development and Strategic Plan for Biodiversity could be a lever for financial resource mobilization, in line with SDG 15 Targets 15 a and 15b.

3 A/RES/70/1 para 33
Sustainable Development Goal 15 - Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss

15.1. By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services, in particular forests, wetlands, mountains and drylands, in line with obligations under international agreements

15.2. By 2020, promote the implementation of sustainable management of all types of forests, halt deforestation, restore degraded forests and substantially increase afforestation and reforestation globally

15.3. By 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought and floods, and strive to achieve a land degradation-neutral world

15.4. By 2030, ensure the conservation of mountain ecosystems, including their biodiversity, in order to enhance their capacity to provide benefits that are essential for sustainable development.

15.5 Take urgent and significant action to reduce the degradation of natural habitats, halt the loss of biodiversity and, by 2020, protect and prevent the extinction of threatened species

15.6 Promote fair and equitable sharing of the benefits arising from the utilization of genetic resources and promote appropriate access to such resources, as internationally agreed

15.7 Take urgent action to end poaching and trafficking of protected species of flora and fauna and address both demand and supply of illegal wildlife products

15.8 By 2020, introduce measures to prevent the introduction and significantly reduce the impact of invasive alien species on land and water ecosystems and control or eradicate the priority species

15.9 By 2020, integrate ecosystem and biodiversity values into national and local planning, development processes, poverty reduction strategies and accounts

15.a Mobilize and significantly increase financial resources from all sources to conserve and sustainably use biodiversity and ecosystems

15.b Mobilize significant resources from all sources and at all levels to finance sustainable forest management and provide adequate incentives to developing countries to advance such management, including for conservation and reforestation

15.c Enhance global support for efforts to combat poaching and trafficking of protected species, including by increasing the capacity of local communities to pursue sustainable livelihood opportunities
Land Degradation Neutrality under the United Nations Convention to Combat Desertification (UNCCD)

At the eleventh meeting of the Conference of the Parties (COP 11) to the UNCCD in 2013, an incorporated in SDG 15, the Parties to the UNCCD decided to make the concept the main framework for the implementation of the Convention. To achieve LDN, degradation of productive land should be avoided and already degraded lands should be restored. The three elements of a monitoring framework for the implementation of the LDN objective - trend in land use/land cover, trend in land productivity and trend in soil carbon stocks - are all relevant for assessing progress on Targets 5 and 15, and contributing to part of Target 7. Efforts to collect information under these indicators, at the national scale, could therefore feed into National Reports to the CBD and vice-versa.

United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement

The contribution of the conservation and restoration of functional ecosystems to climate change mitigation and adaptation is directly addressed by the UNFCCC and the Paris Agreement and Climate Change. National plans and commitments to mitigate climate change are therefore highly relevant to the implementation of Aichi Biodiversity Target 5, 14 and 15.

Nationally Determined Contributions (NDCs) presented by signatories to the Paris Agreement often list targets in the Land Use, Land Use Change and Forestry (LULUCF) or Agriculture, Forestry and Land Use (AFOLU) sectors. Article 5 of the Paris Agreement, building on a series of decisions from the UNFCCC COP4, sets up a mechanism whereby developing countries may receive payments for the results they have achieved to reduce emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of carbon stocks in developing countries (REDD+). To ensure more accurate reporting on Aichi Biodiversity Targets, Parties should consider how climate-related and restoration targets in NDCs are articulated within their national targets in NBSAPs under Aichi Biodiversity Targets 5, 14 and 15 to ensure complementary in intergovernmental processes and commitments taken at national level. (see also Section 3.5).

Other voluntary international initiatives

Independent of national targets set under their NBSAPs or NDCs, several Parties to the CBD have pledged actions on forest restoration and reforestation under a number of international initiatives5 that seek to support climate change mitigation, adaptation, improve water provision and meet broader development goals. These initiatives represent a potential to bolster the implementation of Aichi Biodiversity Targets, in particular Target 15, however their exact contribution to the achievement of the Target will depend on how and where they will be implemented.

4 Notably UNFCCC Decision 1/CP.16, UN Doc. FCCC/CP/2010/7/Add.1, as well as UNFCCC decisions 9/CP.19, 10/CP.19, 11/CP.19, 12/CP.19, 13/CP.19, 14/CP.19 and 15/CP.19.

5 Notably the Bonn Challenge, the New York Declaration on Forests, the Initiative 20x20 and the AFR100.
Bonn Challenge

Among the initiatives, the Bonn Challenge is a global effort to bring 150 million hectares of degraded and deforested land into restoration by 2020 and 350 million by 2030. The Bonn Challenge is an implementation vehicle for national priorities such as water and food security and rural development while simultaneously helping countries contribute to the achievement of international climate change, biodiversity and land degradation neutrality commitments. This includes Aichi Biodiversity Target 15, through the setting of area-based commitments by governmental and non-governmental organizations and other actors. As of January 2017 there are 39 commitments to the Bonn Challenge from national and subnational governments, forest restoration pacts and private companies totalling more than 136 million hectares. None of the Mediterranean countries have committed to the Bonn Challenge to this date.
2 Reporting and Target setting

The text of the Convention requires Parties to submit NBSAPs, as well as national reports that describe measures taken to implement the provisions of the Convention and their effectiveness in meeting the objectives of the Convention. Since the adoption of the Strategic Plan for Biodiversity 2011-2020 at CBD COP 10, revised NBSAPs are expected to describe how Parties intend to implement the Strategic Plan for Biodiversity and achieve the Aichi Biodiversity Targets at the national level. Accordingly, national reports are expected to contain a number of sections that inform specifically on progress towards achieving the Aichi Biodiversity Targets at the national level.

The assessment of NBSAPs and 5th National Reports in the region reveals the following statistics:

- Proportion of Mediterranean countries that have submitted their 5th National Report to the CBD – 92%
- Proportion of Mediterranean countries that have submitted their NBSAP – 42%
- Proportion of Mediterranean countries that have set a national target under Target 5 – 62%*
- Proportion of Mediterranean countries that have set a national target under Target 15 – 54%*

*Many countries that have yet to submit a fully revised NBSAP have provided an indication of what their national targets might be in their 5th National Report.

Whilst most Mediterranean countries have successfully complied with their reporting obligation, more than half have yet to adopt a revised version of their NBSAP, the key instrument for the implementation of the Convention and its Strategic Plan 2011-2020. Among those countries that have a revised NBSAP, some require further elaboration of the actions planned to support the achievement of the Aichi Biodiversity Targets.

As per the guidance set by the Convention, targets at the national level should aim to be Specific, Measurable, Attainable, Realistic and Time-Bound (SMART). Whether a target is attainable or realistic calls in part for a subjective judgement on the political will, enforcement capacity and resources of the country to reverse the trends of ecosystem loss and degradation, and provide an enabling environment for alternative and sustainable use practices. Information on past rates of loss of degradation will also be crucial in determining what might be a realistic objective for the abatement of ecosystem loss and degradation and the restoration of ecosystems.

Whether a target is Specific, Measureable and Time-bound can, on the other hand, be broken down to a handful of elements listed in the tables below for Targets 5 and 15, respectively. The inclusion of quantitative measures contribute to making it more specific. The inclusion of these elements in national targets can help measure the contribution and progress towards achieving the Strategic Plan. National targets that distinguish between gross loss of natural ecosystems and targeted gains also provide a clearer contribution to the Strategic Plan. Aichi Biodiversity Targets 5 and 15 are interlinked, in so far as ecosystem restoration can be used as a way to improve the net balance of ecosystem loss and degradation at the national scale. However, gains in natural ecosystems from restoration do not compensate for loss of natural
Rapid Assessment of Progress Under Aichi Biodiversity Targets 5, 14 and 15 in the Mediterranean region

habit. The benefits and gains to the ecosystem functioning and provisions of essential services, including those relating to water, health, livelihoods and well-being, should be better accounted for through conservation and restoration efforts.

The table below presents statistics on the number of countries in the region that have set a specific and measurable national target in support of Aichi Biodiversity Target (ABT) 5:

<table>
<thead>
<tr>
<th>Table 1. Elements of a Specific, Measureable and Time-bound national target under ABT 5</th>
<th>Nr of countries</th>
<th>Proportion in the region</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Target for Target 5</td>
<td>16</td>
<td>62%</td>
</tr>
<tr>
<td>Rate of abatement of ecosystem loss</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>Target year</td>
<td>8</td>
<td>31%</td>
</tr>
<tr>
<td>Specification of baseline period</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>Prioritization of certain ecosystems</td>
<td>4</td>
<td>15%</td>
</tr>
</tbody>
</table>

Of the countries reviewed, 15 (65%) were found to have set a national target that clearly aligned with Aichi Biodiversity Target 5. Fewer countries however have set a quantitative national target, in line with the element of Target 5 which calls for “at least halving and, where possible, bringing close to zero” the rate of loss of natural ecosystems. Measuring progress towards achieving a reduction by half of that rate requires a baseline rate, established over a certain period. Based on that baseline, countries should be able to set a target reduction in the rate of loss of ecosystems to contribute towards achieving the global target (which is to reduce this rate by at least half), and a target date for that reduction to be achieved (noting that the period for implementing the Strategic Plan is by 2020).

The analyses of National Reports and NBSAPs show that not all Parties that have developed a national target in line with Aichi Biodiversity Target 5 have specified the target rate of abatement of ecosystem loss to be achieved. Even fewer are those countries that have also specified the target date for that abatement to be achieved and the reference year or period against which this abatement is measured. Without these elements, it will be difficult to measure and report on progress at the national level and implementation may not be as strong.

The box below presents examples of national targets in the region that meet some of the elements of a ‘SMART’ target under Aichi Biodiversity Target 5.
Examples of specific and measurable national targets under Aichi Biodiversity Target 5 in the Mediterranean region (‘SMART’ elements are underlined)

ALBANIA: NBSAP- P.78: By 2020, it will be necessary to enhance effectiveness of land management, restoration of degraded areas, and lastly compensation of new degradation, if unavoidable. Special attention should be paid to conservation and/ or rehabilitation of small landscapes. The baseline year for the evaluation of the objectives of 10% of the restoration should be 2010. In order to ensure flexibility, factors in development such as: climate change will be taken into consideration during the rehabilitation of ecosystems.

Preliminary targets from 5th national reports (Revised NBSAP is yet to be adopted)

MALTA: NR-P.5: By 2020, the rate of loss of natural and semi-natural habitats of conservation value is at least halved, and degradation and fragmentation is significantly reduced. The percentage cover of forests and semi-natural areas has not decreased below the CORINE land cover data of 2006.

NR-P.62: Reduced conversion of open landscapes – by 2025 the rate of conversion of natural habitats and all open landscapes will be reduced by half, reducing unsaturated new housing construction, reducing conversion of agricultural land to built area and restoring an abundance of agricultural lands.

The table below presents statistics on the number of countries in the region that have set a specific and measurable national target in support of Aichi Biodiversity Target (ABT) 15:

<table>
<thead>
<tr>
<th>Elements of a Specific, Measureable and Timebound national target under ABT 15</th>
<th>Nr of countries</th>
<th>Proportion in the region</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Target for Target15</td>
<td>14</td>
<td>54%</td>
</tr>
<tr>
<td>Conservation actions explicitly aimed at preserving biomass carbon in natural ecosystems</td>
<td>7</td>
<td>27%</td>
</tr>
<tr>
<td>Quantitative target for the conservation of carbon in natural ecosystems</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Restoration actions explicitly aimed at enhancing biomass carbon in natural ecosystems</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>Quantitative target for the enhancement of carbon in natural ecosystems</td>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>Quantitative target area for restoration</td>
<td>7</td>
<td>27%</td>
</tr>
<tr>
<td>Quantitative target area for restoration with breakdown by ecosystem</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Map of area targeted for restoration</td>
<td>1</td>
<td>4%</td>
</tr>
</tbody>
</table>
Of the 26 countries reviewed in the Mediterranean region, more than half had set a national target that clearly aligned with the objective of Aichi Biodiversity Target 15. However, much fewer had included a quantitative element in their target. In the rare cases where countries have set a quantitative target under Target 15, they have either set it by referring to the area (in hectares) that will be placed under restoration measures, especially with regards to forests, or used a target percentage for the restoration of degraded ecosystems without explaining how this percentage would be measured. Many metrics of degradation (and therefore restoration) are possible, and a reference to area does not give any information as to the baseline of degradation and the targeted degree of restoration to be achieved through these measures (e.g. the density of biomass carbon stocks, species richness, or degree of fragmentation).

Area-based targets provide a useful indication of the level of ambition with regards to the achievement of Target 15. However, further information about the type of restoration actions to be undertaken is needed in order to assess the potential of these actions to contribute to the recovery of ecosystem functions, including the provision of services to people and habitat for species which Target 14 seeks. Meaningfully implementing and monitoring progress under Target 15 would therefore require additional metrics, linked to Target 14, than only area for defining and assessing ecosystems, in order to also capture trends on the quality and trajectory of restoration outcomes, both spatially and temporally.

The box below presents examples of national targets in the region that meet some of the elements of a ‘SMART’ target under Aichi Biodiversity Target 15. In addition, some countries have established clear actions plans for the implementation of their targets, providing detailed actions on how to achieve them, expected results, institutions in charge and indicators of success. As an example, Algeria listed a number of specific actions in order to achieve its national target under Aichi Biodiversity Targets 5 and 15 (reproduced below), such as “Identification and geo-referencing of areas to be restored, as well as necessary financial means, before the end of 2018” or “submission of at least two restoration project proposals with technical and financial partners every year, and signature of at least one project every year” [unofficial translation from French]. For each of these actions, the NBSAP also provided an estimation of its cost.

6 A survey was conducted by FAO in 2009 on the use of indicators for forest degradation. Indicators listed by one or more countries included aesthetic values; area affected by fire; disappearance of biodiversity/species; erosion; forest/canopy cover; fragmentation; occupancy/dominance of invasive/introduced species; presence of pioneer species/indicator species; soil fertility; soil properties; soil structure; species composition; stock density; production/value of timber and non-wood forest products; water quality; wildlife habitats; and wildlife risk. See FAO (2011) Assessing forest degradation Towards the development of globally applicable guidelines, Forest Resources Assessment Working Paper 177. Accessible at http://www.fao.org/docrep/015/i2479e/i2479e00.pdf

Examples of specific and measurable national targets under Aichi Biodiversity Target 15 in the Mediterranean region (‘SMART’ elements are underlined)

ALGERIA: NBSAP- P.56: Objective 12: To protect, conserve and restore the ecosystems in order to ensure their equilibrium, long-term sustainability, as well as the sustainable production of ecosystem services, in view of the conservation at least 50% of land areas, 5% of marine and coastal areas and the restoration of natural ecosystems on an area of at least 5 million hectares [unofficial translation from French].

BOSNIA AND HERZEGOVINA: NBSAP-P.127: By 2020, restore 30 strip-mine lakes into wetland habitats, increase the productivity of all categories of forests, preserve the existing area of flood alder and willow forests, and increase the regulated urban green areas by 20%.

LEBANON: By 2030, rehabilitation plans are implemented in at least 20% of degraded sites that will safeguard the sustained delivery of ecosystem services.

Preliminary targets from 5th national reports (Revised NBSAP is yet to be adopted)

MALTA: NR-P.7: By 2020, vulnerable ecosystems that provide essential services are safeguarded, with at least 15% of degraded ecosystems restored, while 20% of the habitats of European Community Importance in the Maltese territory have a favourable or improved conservation status.

3 Assessment of regional progress under specific components of Aichi Biodiversity Targets 5, 14 and 15

3.1 Halve the rate of loss of natural forests and reduce it to zero where possible

Since the implementation of the Strategic Plan for Biodiversity is to be pursued at all scales, grounded by national actions, a disaggregation of rates of natural forest loss, for example, can highlight where national efforts are insufficient to reverse the trend and where more support may be needed. Based on national reports to the Food and Agriculture Organization of the United Nations (FAO) for Global Forest Resources Assessments (FRA), Figure 1 represents the rate of change in natural forest area8 between 2010 and 2015

8 In FRA reports, ‘natural forest’ is defined as the sum of ‘primary forest’, defined as “naturally regenerated forest of native species where there are no clearly visible indications of human activities and the ecological processes are not significantly
as an annual average for every country. This representation gives equal weight to countries regardless of their forest cover, making small losses in absolute terms in low forest cover countries stand out.

Figure 1 – Average annual rate of change in natural forest area per country between 2010 and 2015

In Figure 2, annual average rates in changes of natural forest area are compared for two periods, the 2005-2010 period, which can be taken as the baseline prior to the adoption of the Strategic Plan for Biodiversity, and the 2010-2015 period, which corresponds to the first half of the implementation period of the Plan. A first group of countries, in blue, were already registering gains in natural forest area prior to the adoption of the Strategic Plan. Since the adoption of the Plan, dark blue countries have seen their rate of gain in natural forest area accelerate. Light blue countries have continued to gain in natural forest area, although more slowly than prior to 2010. Countries in green are those where there has been a net loss of natural forest, but where the rate of loss has been reduced, therefore showing progress towards the achievement of Target 5. Countries in red are seeing acceleration in the rate of loss of natural forest area. Countries in red are failing to make progress towards the achievement of Target 5 and require international support to follow up their commitments. Caution should be taken that significant degradation of forests, or the replacement of old-growth forest by early regenerating forest is not visible from this data. Caution should also be taken that Italy and France count with significant areas of non-Mediterranean forests.

HRB: "disturbed", and ‘other naturally regenerated forest’, defined as “naturally regenerated forest where there are clearly visible indications of human activities”
The broad trends that can be distinguished from this analysis is that North Mediterranean countries are on a path of natural forest gain or reduction of the rate of forest loss, while South and Eastern Mediterranean countries are struggling to abate their rate of loss of natural forests. Exceptions to this rule are Portugal, where extensive forest fires in recent years have caused a rebound of the rate of forest loss and the Balkans, where previous trends of forest gain seem to have reversed. In the South and Eastern Mediterranean, Tunisia and Israel stand out respectively for reducing the rate of forest loss by more than 90% and reversing the trend of net natural forest loss to net natural forest gain.

The contrasted national situations that can be seen on this map further illustrate the need for closer cooperation between Mediterranean countries for the sake of conserving Mediterranean ecosystems as a whole.

Remote-sensing observations make it possible to map land cover and land cover changes over large areas or even at global scale, at relatively low costs and regular intervals. The analysis of remote sensing data of forest cover from the Global Forest Change (GCF) dataset can be a useful complement to data collected at the national scale such as the FAO FRA.

Figure 3 below presents annual data on gross forest cover loss for all Mediterranean countries between 2001 and 2014. The spatially explicit character of the GCF data means that it was possible to circumscribe the analysis to a specific ecoregion, across national boundaries. The results show that gross forest cover

9 The Global Forest Change dataset is a high-resolution dataset characterizing forest extent and change. Trees are defined as vegetation taller than 5m in height and are expressed as a percentage of canopy cover for the year 2000, at a resolution of 30 meters. Different thresholds of canopy cover can be used to define forest extent using the data. ‘Forest Cover Loss’ is defined as a stand-replacement disturbance, or the loss of the canopy cover within the forest extent thus defined, is available at yearly intervals between 2001 and 2014. ‘Forest Cover Gain’, the inverse of forest loss, is also available at yearly intervals. – see Hansen, M. (2013) High-resolution global maps of 21st-century forest cover change. Science 342, 850–853
loss in the Mediterranean forest ecoregion is accelerating over the period, indicating that further efforts are urgently needed for this ecosystem to contribute to the objective of Aichi Biodiversity Target 5. A more fine scale analysis of remote sensing data on forest cover loss can help countries identify particular hotspots and related causes, in order to design the right policy responses.

Figure 3 - Forest cover loss in Mediterranean Forest Ecoregion, in hectares (original figure created with Global Forest Watch using WWF data on Terrestrial ecoregions)

<table>
<thead>
<tr>
<th>Forest cover loss in Mediterranean Forest Ecoregion, in hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Forest >10% canopy cover) - Source: Global Forest Watch and WWF Terrestrial Ecoregions</td>
</tr>
</tbody>
</table>

Relevant findings from the State of Mediterranean Forests 2013

There has been a significant increase in forests in the north due to the abandonment of marginal agricultural lands and tree-planting campaigns. In the south, forest ecosystems are still threatened, particularly in the Maghreb, due to clearing and farming on marginal lands and overgrazing. It is estimated that only 5 percent of the original vegetation remains relatively intact in the region. The situation differs across the region. In the northern Mediterranean, forests are often abandoned, whereas in the south and east, anthropogenic pressures contribute to land degradation.
3.2 Halve the rate of loss of natural habitats and reduce it to zero where possible

Assessing progress against this component of Target 5 is difficult owing to the lack of consistent indicators for tracking the extent of ecosystems other than forests. This paucity of data is a cause for concern: as efforts to curb the loss of natural ecosystems and to restore degraded ecosystems focus on forests for their benefits in terms of climate mitigation and adaptation, as well as for economic productivity, thus there is a risk that drivers of land use conversion could be displaced to other ecosystems, including across borders10. In the absence of baseline data on their extent, such a trend would remain undocumented.

Afforestation projects could also occur at the detriment of biodiversity-rich ecosystems other than forest, in particular old-growth grasslands.11 Grassland biomes can sometimes be misrepresented as the result of anthropogenic actions that cleared forest and arrested subsequent succession, and therefore be the target of efforts to increase forest cover. Efforts are underway to develop criteria for the identification of old-growth grasslands and to distinguish them from recently formed anthropogenic vegetation, which could help to consider the trade-offs between policies and actions to increase forest cover and the benefits of maintaining and conserving grassland ecosystems.12 In the Mediterranean context, anthropogenic savanna grasslands such as the dehesa and montado of Spain and Portugal also provide habitats for many important species.13 There, an increase of forest cover through natural regeneration after abandonment of the land or active reforestation is seen by some as a threat to biodiversity.14

Wetlands are another ecosystem essential to biodiversity and people, yet they are shrinking throughout the world. In the Mediterranean Region, 50\% of their total area disappeared during the 20th century.15 Meanwhile, coastal wetlands are some of the most important wetlands in terms of size and biodiversity, but they are subject to very significant pressure due to the high population density and concentration of human activities on the coast. Relevant findings from the Mediterranean Wetlands Observatory are presented below, which show the value of regional initiatives to monitor ecosystem loss and degradation.

14 Pereira P. M. and Da Fonseca (2003), Nature vs. Nurture: the making of the Montado ecosystem, Conservation Ecology, 7

Relevant findings from the Mediterranean Wetlands Observatory

A constant loss of natural wetland habitats over 30 years not offset by the increasing area of artificial wetland habitats

From 1975 to 2005 the surface area of Mediterranean natural wetland habitats steadily decreased by 10%, representing a total loss of 1,248 km² for the 214 study sites. Marshes and wet meadows were the most significantly affected habitats, but large bodies of water were not spared. For example, in the Nile Delta, Egyptian lagoons, which are very important in terms of biodiversity, experienced a spectacular loss of 398 km².

At the same time, the surface area of artificial wetland habitats increased by 54% (661 km² for the 214 sites). This artificialisation occurred especially from 1975 to 1990, particularly via the very rapid development of artificial wetland reservoirs (+700%).

Agriculture and urbanization—the principal causes behind the disappearance of natural habitats

Agriculture is the most significant direct cause of natural wetland habitat loss: 7% of the natural wetland habitats that existed in 1975 at the sites studied had been converted into agricultural areas by 2005. In particular, irrigated agriculture progressed considerably during this period of time, and wetlands were very attractive for this purpose because they are flat and fertile, and generally have a large supply of water.

Urbanization had a less significant direct impact on natural wetland habitats, because only 0.75 % of natural wetland habitats present in 1975 at the sites studied were urbanized. However, it seems to be the principal driving force behind the changes observed since 1990, and eats up peri-urban agricultural areas in particular.

Finally, agriculture and urbanization also result in increased water abstraction, with a major impact on natural wetland habitats, and intensified water management practices due to the fact that water is a scarce and unevenly distributed resource in the Mediterranean Region.

3.3 Significantly reduce the rate of degradation and fragmentation

The condition of natural habitats is important for biodiversity. Habitats that are highly degraded or fragmented are less likely to be able to support their full complement of species or provide the same level of ecosystem services and functions provided by intact habitats.

Whilst the diminution of extent of habitats is relatively simple to measure, degradation and fragmentation require indicators and associated data collection that are specific to the structure, composition and function of the ecosystem under consideration, and can cover many aspects ranging from the richness in species to the provision of ecosystem services to human populations. The diversity of variables that can be considered to assess degradation means that the development of globally consistent indicators that could be readily used at the national scale across ecosystems is especially challenging and potentially reductive. However, the development of such indicators at the regional level, across relatively similar biomes or ecosystems, could be a cost-efficient manner to improve available data for decision-making at the national scale.

Relevant findings from the State of Mediterranean Forests 2013

Between 1992 and 2009, the area of arable land decreased by 7 million hectares (13 percent) in the Northern Mediterranean Countries and by 4 million hectares (9 percent) in the South East Mediterranean Countries. Figure 1.24 shows that there were considerable differences between countries, with losses of arable land greater than 25 percent in Croatia, Malta, Portugal and the Former Yugoslav Republic of Macedonia, and gains of between 15 percent and 20 percent in Bosnia and Herzegovina and Egypt.

Overgrazing is a major cause of soil degradation in many South East Mediterranean Countries.

In the Mediterranean region, long time-series of forest fire data are available mainly for France, Greece, Italy, Portugal and Spain, whereas the situation in other Mediterranean countries is often analysed separately because of disparities in the data. The European Forest Fire Information System (EFFIS), established by the Joint Research Centre and the Directorate General for Environment of the European Commission to support fire management in Europe, is the main source of harmonized data on forest fire in Europe on the basis of information on fire provided voluntarily by countries. Since 2010, EFFIS has also included northern African countries in the mapping of burnt areas and the assessment of fire danger.
3.4 **Ecosystem resilience has been enhanced through conservation and restoration, [...] thereby contributing to climate change adaptation and to combating desertification**

Ecosystem resilience refers to the ability of an ecosystem to cope with and respond to disturbances and to restore itself. In general, highly resilient ecosystems can respond to natural disturbances, such as fire, flooding and pest outbreaks, more quickly than ecosystems which have low resilience.

With the growing impacts of climate change, ecosystem resilience will become increasingly important as ecosystems will need to cope with changing environmental conditions and more frequent extreme weather events. The degraded state of ecosystems may also cumulate with the effects of climate change and bring natural ecosystems over ‘tipping points’, into a different stable state which may not provide the same services or support the same species.

Relevant findings from the State of Mediterranean Forests 2013

All forest management decisions should now take climate change into consideration, but how to take the uncertainty associated with climate change into account in management plans is a formidable challenge. In a region where fragmentation is high because of geomorphology and the long history of human activities, it is unlikely that the migration of plant species and forest types will be fully able to ameliorate the impacts of climate change on forests. Even where migration is possible, societies may be unwilling to accept massive forest dieback in some areas and the subsequent natural selection of more suitable genotypes, and may demand intervention.

The future of Mediterranean forests and the sustainable delivery of their goods and ecosystem services are threatened by the rapid climatic changes that the region is experiencing [...] These climatic changes have caused or contributed to tree mortality across the Mediterranean region and are having negative impacts on the carbon and water balances of many Mediterranean forests. The already harsh climatic conditions for forest growth are projected to continue to deteriorate under all the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emissions scenarios. Such changes in climatic conditions have major implications for the future functioning and sustainability of Mediterranean forest ecosystems. Beyond vulnerability assessment, these changes require adaptation using appropriate existing practices and the development of innovative practices.

16 Quick Guides for the Aichi Biodiversity Targets, Target 15, SCBD, accessible at https://www.cbd.int/nbsap/training/quick-guides/
Water management: Most Mediterranean forests grow under water-limited conditions, with potential evapotranspiration higher than precipitation and actual evapotranspiration comprising up to 90 percent of annual precipitation. Trees are unable to reach their full potential level of transpiration, restricting the amount of carbon that can be fixed. Projected climatic changes will exacerbate these conditions. Up to a certain point, forest management and planning can help to reduce tree water stress and increase the survival of forest stands. Management practices can also help to maintain or increase the biomass produced in a stand using less water (i.e. better water-use efficiency).

Fire management: There is a need to regulate traditional fire use. On the other hand, in some regions, good practices in traditional burning have been maintained and should be consolidated. Community-based fire management requires a permanent dialogue between professionals and the rural population and an acknowledgement of the need for fire use.

Experimenting with innovative forest practice takes time, and it is needed. In the short term, however, knowledge can be gained from uncontrolled specific situations, such as exceptional climatic events. For this, there is an urgent need to improve the documentation of the current situation of Mediterranean forests regarding climate change, such as long-term climatic data, vegetation maps and records of past silviculture (including of the origins of planted material). The lack of such documentation frequently limits the capacity for analysis in specific situations. If accurate assessment data were available, modelling could help to deal with uncertainty.

Climate change projections predict a significant raise of temperatures with a major increase in number and frequency of droughts and heat waves in the Mediterranean region. These climatic variations could change length and severity of the forest fire season, the forest area potentially affected by fires and the occurrence of large fires contributing to desertification.
3.5 **The contribution of biodiversity to carbon stocks has been enhanced, through conservation and restoration, including restoration of at least 15 per cent of degraded ecosystems, thereby contributing to climate change mitigation.**

Degraded ecosystems are not only less resilient to climate change, they also tend to have lower carbon stocks. The degradation of ecosystems in most cases results in the release of carbon, while restoration can help to increase carbon sequestration, depending on the site, and therefore contribute to climate change mitigation. Improving the way ecosystems are managed and used is therefore not only crucial to reducing habitat loss, the main driver of biodiversity decline, it is also a key component in efforts to mitigate climate change and adapt to its consequences.

As described in Section 0, few countries in the region have set quantitative targets for ecosystem restoration. However, national targets for climate mitigation based on ecosystems (under LULUCF or REDD+ sectors) and restoration targets (such as national pledges to the Bonn Challenge) are highly relevant to Aichi Biodiversity Targets 5, 14 and 15. While not all REDD+ actions or actions in the LULUCF sector are aligned with biodiversity objectives, measures can be taken to maximise synergies and reduce potential negative impacts (direct and indirect) and externalities between forest and other ecosystem-based mitigation actions, as well as with actions for the conservation and restoration of natural habitats.

Those countries that have yet to adopt a revised NBSAP may therefore wish to consider in which ways these other ecosystem-based targets will be reached and the extent to which they could be included as support to the reduction of natural ecosystem loss and the promotion of natural ecosystem restoration. Countries that have already adopted their revised NBSAP may wish to consider these synergies when undertaking further planning of its implementation. The analysis contained in CBD information document entitled ‘Restoration of forest ecosystems and landscapes as contribution to the Aichi Biodiversity Targets’ ([UNEP/CBD/COP/13/INF/11](https://www.cbd.int/doc/infosheets/pdf/13/inf11.pdf)) can be consulted for more information on this topic.

The box below presents, for a selection of countries in the region, quantitative area-based or volume-based nationally determined contributions (NDCs) in the Agriculture, Forestry and Other Land Use (AFOLU) or LULUCF sectors, and compares that to the national targets expressed in Parties' national reports to the CBD and NBSAPs. In the case of Morocco and Jordan, for example, restoration target established under the NDC is much more specific than the target established in their NBSAP.

A clarification or revision of that restoration target in their NBSAP could ideally be provided, building on related restoration commitments under the UNFCCC and possible future pledges to the Bonn Challenge, as well as resources for implementation. Such actions could elaborate how various commitments are articulated, based on the following points:

- How area-based and forest cover restoration targets relate to the extent of degraded ecosystems, to determine what percentage of degraded ecosystems is targeted for restoration and how that percentage compares to the 15% target under Aichi Biodiversity Target 15;
• How quantitative forest cover targets relate to the area-based targets for Forest Landscape Restoration (only a fraction of which may result in actual increase in forest cover); and

• How the restoration techniques used, types of ecosystems targeted and location of restoration actions will allow for the achievement of carbon or volume-based quantitative targets under the UNFCCC whilst preserving a balance of ecosystem services and restoration of natural habitats

Table 3. Comparison of restoration commitments under the NDC and NBSAP of selected countries

<table>
<thead>
<tr>
<th>Selected countries</th>
<th>Nationally determined contribution in the AFOLU or LULUCF sectors under the UNFCCC</th>
<th>Revised NBSAP (post CBD COP 10)</th>
<th>National target under Aichi Biodiversity Target 15, with an emphasis on the quantitative elements, where present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morocco</td>
<td>Reconstitution of forests on 200,000 ha by 2020. Morocco’s target is to reduce its overall GHG emissions by 32% by 2030. 26% of these emission reductions will come from the agriculture sector, and 5% from the forest sector.</td>
<td>✔️</td>
<td>NBSAP-p.52: Prendre les mesures nécessaires en vue d’augmenter la résilience des écosystèmes et la contribution de la biodiversité aux stocks de carbone, notamment au moyen de la conservation et de la restauration, des mesures d’atténuation et d’adaptation aux changements climatiques, et de la synergie avec les actions prises dans le cadre des autres conventions de Rio (Changements climatiques et lutte contre la désertification).</td>
</tr>
<tr>
<td>Jordan</td>
<td>Restore 1,200,000 hectares of forest landscapes</td>
<td>✔️</td>
<td>NBSAP-P.65: By 2020, a national strategy for forest conservation and sustainable use is developed and effective</td>
</tr>
</tbody>
</table>
Relevant findings from the State of Mediterranean Forests 2013

In 2010, forests in the Mediterranean region stocked almost 5 billion tonnes of carbon, which was 1.6 percent of global forest carbon (289 billion tonnes; FAO, 2010b). Between them, France, Italy, Spain and Turkey stored 65 percent of the total forest carbon stock in the Mediterranean region (figures 2.5 and 2.6).

The forest carbon stock in the Mediterranean region increased by about 1.2 billion tonnes between 1990 and 2010, a rate of increase of 1.3 percent per year. This was in contrast to an overall global decrease in world forest carbon stock in the same period.

According to FAO (2011), forest cover is expanding in the north of the Mediterranean region (by 556 000 ha per year between 2000 and 2005), while it is stable or slightly increasing in the [South East Mediterranean Countries] (increasing overall in that subregion by 120 000 ha per year between 2000 and 2005, despite limited forest cover and forestation potential in many of those countries). According to an evaluation made in 2005 (Ding et al., 2011), the economic value of carbon storage in Mediterranean forests ranges between US$37 billion and US$63 billion, i.e. 13 percent of the forests total economic value, for the IPCC climate change scenarios A1 and B2, respectively, with 2050 as the horizon.

In order to preserve carbon stores and the carbon sequestration potential of Mediterranean forests, it is essential to actively manage forests to reduce the risk of intense wildfire, for example by thinning to reduce tree density, using prescribed fires to control fuel availability, and creating firebreaks and discontinuities in the landscapes to slow fire progression and attenuate their intensity (Kashian, 2006; Vericat et al., 2012). Such measures can increase forest resilience, accelerate recovery and consequently stimulate carbon sequestration capacity.

European forests in general, and Mediterranean forests in particular, have been managed intensively for centuries and shaped by human activities, and a range of management options and forestry practices, supported by empirical and scientific evidence, is available for use in adapting to climate change (Alcamo, 2007; FAO, 2011). Nevertheless, mitigation measures in the forest sector must be supported by adequate incentives.
3.6 **Ecosystems that provide essential services, including services related to water, and contribute to health, livelihoods and well-being, are restored and safeguarded**

Relevant findings from the State of Mediterranean Forests 2013

Traditional uses of wooded lands and pastoral areas are being increasingly abandoned in the [Northern Mediterranean region] but are still essential in the [Southern Mediterranean Region]. The ecosystem services provided by these areas – such as the protection of soil and water, protection against erosion and desertification, carbon sequestration and biodiversity conservation – are increasingly recognized. However, these services are threatened by degradation. Pressures include overuse in the south and, in the north, an increasing risk of forest fire as forest fuel loads increase and the climate becomes drier.

Water services

The Mediterranean region is in a serious situation of water stress. The catchment areas of Libya, southern Spain, Tunisia and the southeast Mediterranean (Israel, Lebanon, Palestine and the Syrian Arab Republic) are most vulnerable due to limited water resources and high demand […]. Moreover, these areas often use nonconventional water resources (e.g. desalination and wastewater treatment) and non-renewable resources (extracting from fossil aquifers) in addition to surface water. Basins in northern Italy, western Greece and the Ebro in Spain are in a situation of moderate water stress, while the Mediterranean parts of France and the Balkans are stable.

Non-wood Forest Products (NWFPs)

Mushrooms, cork, pine nuts, chestnut, honey and truffles are among the most important NWFPs in the Mediterranean region. The impressive diversity of species that characterizes the Mediterranean region offers potential for the production of a wide variety of NWFPs. Some countries in the Mediterranean region have specific legislation for some NWFPs, such as cork, but generally a lack of a clear definition hinders the regulation of NWFP cultivation, extraction and exportation (for example, in Greece the only officially recognized NWFP is resin).

There is considerable potential in the Mediterranean region for NWFP harvesting to produce significant income and to generate rural employment and promote sustainable forest management. However, a lack of a legislative framework to regulate the harvesting and use of NWFPs is affecting the development of this subsector. A clear definition of NWFPs is needed to help countries to evaluate the importance of these products in local economies and to support new projects aimed at promoting the sustainable use of NWFPs.
Recreational services

Social ecosystem services can be provided by almost any type of forest (and regardless of their designated function), depending on people’s perceptions. FOREST EUROPE, UNECE and FAO (2011) report the share of forests accessible for forest recreation. In southwestern Europe, 78 percent of forests and other wooded lands ('OWLs') is available for recreation, while in southeastern Europe this share is 93 percent. Four Mediterranean countries reported the average number of visits per ha of forest and OWLs (Table 2.20), which varied between 0.8 and 28.7. Data on social ecosystem services provided by forests is scarce for most countries and do not reflect the importance of forests in this regard. In most cases the data are limited to certain areas, such as national parks.

Cork Oak forests - A flagship ecosystem for the provision of social, economic and environmental services

The management of cork oak forests is one of the most important economic forest-related issues in the Mediterranean region, which historically has been funded by the production and sale of cork stoppers.

Mediterranean cork oak forests are ecosystems of high conservation value that provide a wide range of important goods and ecosystem services. Although cork oak forests are the result of centuries of human management, today they face substantial socio-economic change and may be threatened by climate change. Innovative conservation and management approaches are important for conserving biodiversity and the multifunctionality of these fragile, human-shaped ecosystems. Continued effort is needed to encourage sustainable practices and to prevent the overexploitation of natural resources, land abandonment and biodiversity loss.

State of Mediterranean Forests 2013

4 Conclusions: Policy alignment between the Strategic Framework on Mediterranean Forests and Aichi Biodiversity Targets 5, 14 and 15

In March 2013, during the 3rd Mediterranean Forest Week that was held in Tlemcen (Algeria), the Strategic Framework on Mediterranean Forests: Policy orientations for integrated management of forest ecosystems in Mediterranean landscapes (SFMF) was presented. The framework was elaborated in response to the pressure on Mediterranean forests, exacerbated by climate change and socioeconomic crisis.17 Parties

17 For more information, see http://iii-med.forestweek.org/content/strategic-framework-mediterranean-forests-sfmf
present agreed that an improved regional cooperation (North-South and South-South) was key to cope with these new challenges, and nine strategic lines of action were identified:

- Improve sustainable production of goods and services by Mediterranean forests
- Enhance the role of Mediterranean forests in rural development
- Promote forest governance and land tenure reforms at landscape level
- Promote wild fire prevention in the context of global changes
- Manage Forest Genetic Resources and biodiversity to enhance adaptation of Mediterranean forests
- Restore degraded Mediterranean forest landscapes
- Develop knowledge, training and communication on Mediterranean forests
- Reinforce international cooperation
- Adapt existing financing schemes and develop innovative mechanisms

Strategic line six, to “Restore degraded Mediterranean forest landscapes”, is expected to provide the following results:

- Resilience to climate change is enhanced by restoring Mediterranean forest ecosystems with a global vision to cope with desertification issues
- Forest ecosystems restoration is promoted as an opportunity to enhance food security and livelihood in Mediterranean drylands
- Environmental and cultural services (including biodiversity) are regained in these restored forest ecosystems
- Forest restoration is considered long term and with integrated approaches, restored forest ecosystems are managed, monitored and evaluated

These goals are very similar to those of Aichi Biodiversity Targets 5, 14 and 15 of the CBD. The matrix presented below in Table 3 illustrates how the goals of the Strategic Framework complement the Aichi Biodiversity targets, and the verse. This could potentially lead to cross-sectoral initiatives at the Mediterranean level that support national governments in the region to enhance and accelerate their forest and biodiversity objectives and report to the Secretariat of the CBD, UNFF Secretariat and FAO on their contributions towards this achievement.
Matrix of Policy alignment between Aichi Targets 5, 14 and 15 and the Strategic Framework on Mediterranean Forests – ‘X’ denotes the potential for synergies at the juncture of two policy objectives

<table>
<thead>
<tr>
<th>Policy Objective</th>
<th>Improve sustainable production of goods and services by Mediterranean forests</th>
<th>Enhance the role of Mediterranean forests in rural development</th>
<th>Promote forest governance and land tenure reforms at landscape level</th>
<th>Promote wild fire prevention in the context of global changes</th>
<th>Manage Forest genetic Resources and biodiversity to enhance adaptation of Mediterranean forests</th>
<th>Restore degraded Mediterranean forest landscapes</th>
<th>Develop knowledge, training and communication on Mediterranean forests</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABT 5: Halve the rate of loss of natural forests and reduce it to zero where possible</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABT 5: Halve the rate of loss of natural habitats and reduce it to zero where possible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABT 5: Significantly reduce the rate of degradation and fragmentation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABT 15: Ecosystem resilience has been enhanced through conservation and restoration, [...] thereby contributing to climate change adaptation and to combating desertification</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Potential to contribute to national reporting on all the components</td>
</tr>
<tr>
<td>ABT 15: The contribution of biodiversity to carbon stocks has been enhanced, through conservation and restoration, including restoration of at least 15 per cent of degraded ecosystems, thereby contributing to climate change mitigation</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABT 14: Ecosystems that provide essential services, including services related to water, and contribute to health, livelihoods and well-being, are restored and safeguarded</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABT 14: ...taking into account the needs of women, indigenous and local communities, and the poor and vulnerable.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>